
Quantum Programming
Languages and Frameworks

A Survey by Magne Tenstad

Selected Topics of Software Technology: Quantum Computing (VU 716.204)

June 27, 2024

1

Outline

● Features and Challenges

● A Quantum Hello World

● Top Frameworks

● Other Noteworthy Languages

● On the Need of a Quantum-Oriented Paradigm

● Final Remarks

2

Features and Challenges

Features

● Qubits and quantum gates

● Superposition and entanglement

● Measurement

● (Integration with classical code)

Challenges

● Design useful abstractions

● Quantum error handling

● Debugging

● Hardware support

3

The Bell State, a Quantum Hello World

● Two qubits

● One hadamard gate

● One controlled-not gate

4

Source

● Illustrates entanglement and
superposition

● Measurement: either 00 or 11

https://upload.wikimedia.org/wikipedia/commons/f/fc/The_Hadamard-CNOT_transform_on_the_zero-state.png

Top Frameworks

● Qiskit

● Q#

● Pyquil

● Cirq

These were excellently covered by Hannah Jud in this course in 2022.

IBM, 2017

Microsoft, 2017

Rigetti, 2017

Google, 2018

5

Qiskit (IBM, 2017)

6

from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator

qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])

backend = AerSimulator()
qc_compiled = transpile(qc, backend)
print(backend.run(qc_compiled, shots=10)
 .result().get_counts(qc_compiled))

Q# (Microsoft, 2017)

7

open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Measurement;

namespace BellState
{

@EntryPoint()
operation BellStateWithMeasurement() : (Result, Result) {
 using (qubits = Qubit[2]) {
 H(qubits[0]);
 CNOT(qubits[0], qubits[1]);
 let m0 = M(qubits[0]);
 let m1 = M(qubits[1]);
 return (m0, m1);
 }
}

}

Pyquil (Rigetti, 2017)

8

from pyquil import Program, get_qc
from pyquil.gates import CNOT, MEASURE, H

qvm = get_qc("2q-qvm")

p = Program()
p += H(0)
p += CNOT(0, 1)
ro = p.declare("ro", "BIT", 2)
p += MEASURE(0, ro[0])
p += MEASURE(1, ro[1])
p.wrap_in_numshots_loop(10)

print(qvm.run(p).get_register_map()["ro"].tolist())

Cirq (Google, 2018)

9

from cirq import CX, Circuit, GridQubit, H,
Simulator, measure

q0 = GridQubit(row=0, col=0)
q1 = GridQubit(row=0, col=1)
c = Circuit()
c.append(H(q0))
c.append(CX(q0, q1))
c.append(measure(q0, key="m0"))
c.append(measure(q1, key="m1"))

print(Simulator().run(c, repetitions=10))

Observations on the Top Frameworks

● From 2017-2018

● Most are based on Python

● Enable quantum circuit construction

● Associated with services from large companies

○ IBM Qiskit Runtime, Microsoft Azure, Rigetti Quantum Cloud Services, Google Quantum
Computing Service

➔ Unlike classical programming languages, it seems that services fuel
development and popularity of quantum programming languages.

10

Other Noteworthy Languages

● QCL

● Quipper

● OpenQASM

● Silq

● QHDL

● Rhyme

1998

2013

2017

2020

2023

2024

11

QCL (1988)

● Recognized as first
high-level quantum
programming language

12

Quipper (2013)

● “Scalable, expressive,
functional and
higher-order”

● Based on Haskell

13

import Quipper

bellState :: Circ (Bit, Bit)
bellState = do
 q0 <- qinit False
 q1 <- qinit False

 hadamard_at q0
 qnot_at q1 `controlled` q0

 m0 <- measure q0
 m1 <- measure q1

 return (m0, m1)

main :: IO ()
main = print_simple Preview bellState

● Represents universal physical
circuits

● Compilation target for other
languages

● Elements of C and assembly
languages

OpenQASM (2017)

14

OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
creg c[2];
h q[0];
cx q[0], q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

Silq (2020)

● High-level language

● Intuitive semantics

● Supports safe, automatic
uncomputation

15

QHDL (2023)

● Low-level circuit description
language for QC

● Inspired by VHDL

16

Rhyme (2024)

● Quantum types as extensions of classical bits, integers, floats, characters,
arrays, and strings.

● || operator creates superposition of classical values

17

● Paper from 2023 by Shaukat Ali and Tao Yue

● “Specialized backgrounds are required to build QC applications, limiting the
maximum exploitation of QC’s potential.”

● QOP shall enable cost-effective and intuitive development, independent of
low-level quantum mechanics (e.g., superposition and entanglement).

● Proposes encapsulation, abstractions, and separation of concerns as features
of the QOP.

On the Need of a Quantum-Oriented Paradigm (QOP)

18

List of Quantum Languages and Frameworks

https://docs.google.com/spreadsheets/d/17GZWMUrBYf23iieLb7x7utYwPUTWOcY7z2bHBhqnWpU
19

https://docs.google.com/spreadsheets/d/17GZWMUrBYf23iieLb7x7utYwPUTWOcY7z2bHBhqnWpU

Final Remarks

● Availability of hardware steers development

● Quantum languages’ requirements differ from classical languages

○ Still, popular quantum frameworks are implemented in classical languages

● Most are circuit-based, but Silq, Rhyme and QOP and bringing new ideas

● Heavily researched topic, new approaches are proposed each year

20

References

● P. Singh et al., "A Survey on Available Tools and Technologies Enabling Quantum Computing," in IEEE Access, vol.
12, pp. 57974-57991, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3388005

● Shaukat Ali and Tao Yue. 2023. On the Need of Quantum-Oriented Paradigm. In Proceedings of the 2nd International
Workshop on Quantum Programming for Software Engineering (QP4SE 2023). Association for Computing
Machinery, New York, NY, USA, 17–20. https://doi.org/10.1145/3617570.3617868

● Language-specific references listed in this spreadsheet.

● Implementations of the bell state in Q#, Quipper and OpenQASM were done by OpenAI’s ChatGPT.

21

https://doi.org/10.1109/ACCESS.2024.3388005
https://doi.org/10.1145/3617570.3617868
https://docs.google.com/spreadsheets/d/17GZWMUrBYf23iieLb7x7utYwPUTWOcY7z2bHBhqnWpU

